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Exact expressions for first- and higher-order residence time statistics, count statistics, and spectral properties
of a bistable system driven by dichotomous colored noise are put forward and discussed. The employed method
is based on a discrete kinetic scheme and is valid for a wide range of parameter values of the colored noise.
This permits a detailed analysis of the effects of noise correlations for arbitrary correlation times. It is found
that at a characteristic correlation time of the dichotomous noise, the residence time sequence becomes Pois-
sonian; in particular, all correlations between residence times disappear. We also find that correlations become
strongest for a finite strength of the driving force. The analytical results can also be used to infer the underlying
driving parameters in the case of noise with long-range temporal correlations.
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I. INTRODUCTION

The noise-assisted escape from a metastable state is one
of the basic problems in statistical physics. The problem is
encountered in different fields, such as, for instance, chemi-
cal physics �reaction rate problem�, biological physics �con-
formational changes of proteins�, and neurobiology �stochas-
tic firing of action potentials by a nerve cell�. There exists a
mathematical apparatus �Langevin equation, Fokker-Planck,
and master equations� by which escape processes under dif-
ferent conditions �see below� can be faithfully described and
analyzed.

As a matter of fact, many escape processes repeat them-
selves over and over again. This is true, for instance, for the
escape from the resting state in excitable systems such as
neurons—here the escape is associated with the occurrence
of a spike �neural action potential� after which the dynamics
is brought back via a recovery state to the resting state from
which it started. Another example is the Brownian motion in
a periodic potential �a model for an impressive number of
different physical systems, see �1��. Here the metastable
states are the �infinitely many� potential minima. Last but not
least, a bistable system as given by the potential in Fig. 1�a�
provides one of the simplest example in which we can have
a sequence of escape events, namely the noise-driven transi-
tions from the left to the right and from the right to the left
minima.

In all the above examples, the statistics of the escape pro-
cess is completely characterized by the sequence of residence
times (RT) �together with the information in which state the
RT was spent if this is ambiguous�. Another statistics with
the same information �although not intuitive in every system�
is the count statistics for the number of transitions within a
certain time window. Most of the aforementioned work has
focused solely on the statistics of the mean number of es-
capes �if divided by the time window, this gives the escape
rate� or the statistics of a single RT �the mean of which is
equal to the inverse escape rate�. Higher-order statistics,
however, can reveal important aspects of the underlying dy-

namics. This has been recognized in neuroscience, where
intervals between adjacent action potentials �corresponding
to first-passage times or residence times� can exhibit strong
correlations �2–4�. Theoretical studies have characterized
these correlations �5–7� and have elucidated their biological
function for an enhanced signal transmission �3,8–10�. Out-
side the neural context, however, correlations among resi-
dence times are still largely unexplored.

Let us recall the classical Kramers problem for the escape
in a symmetric bistable potential as sketched in Fig. 1�a� to
illustrate why researchers were not interested in higher-order
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FIG. 1. Bistable dynamics with a noise-induced escape over the
potential barrier at x=0. Unperturbed dynamics in �a� and the
bistable dynamics with dichotomous fluctuations in �b�.
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statistics. Driven only by thermal fluctuations, the escape
rate for this system has been studied by Kramers �11� and
others �see �12��. The simpler overdamped case is described
by only one Langevin equation,

ẋ = − U��x� + �2D��t� . �1�

Here we have set the friction constant �the prefactor of the
time derivative� to 1; inertia �the second temporal derivative�
has been neglected. The potential U�x� should be symmetric
around zero and the thermal fluctuations with noise intensity
D are uncorrelated ���t���t���=��t− t��. Kramers and others
focused on the problem to calculate the rate of escape out of
one of the minima across the barrier �the potential maximum
at x=0 in Fig. 1�a�� in the limit of weak fluctuations �D
��U� and came up with the famous result

r =
�U��xmin��U��xmax��

2�
exp�− �U/D� . �2�

For weak noise, the rate r is indeed all we have to know.
First of all, the limit of weak noise implies that the residence
time distribution follows a rare-time statistics, i.e., an expo-
nential distribution that is completely determined by just one
parameter—the rate r. Secondly, it follows from the Markov
character of the system Eq. �1� that the residence times are
uncorrelated—once the particle has crossed the barrier, it
does not have any memory about this past escape event and
about the time �residence time� spent in the previous mini-
mum. Hence the length of one residence time cannot affect
that of the following intervals and all the residence times in
the sequence are mutually independent. The sequence of es-
cape events forms a renewal point process that is moreover
�because of the exponential residence time density� a Poisson
process for which also the counting statistics is straightfor-
ward. Hence, in the case of a purely white-noise driven es-
cape the rate is the only parameter we have to know. Higher-
order correlations in the RT sequence are simply not present
in the overdamped variant of the classical Kramers problem.
We note that for the moderately damped and underdamped
problem, we expect that the RT sequence displays correla-
tions, however in this case already the calculation of the
escape rate is sufficiently difficult.

It should be mentioned that a trivial kind of correlation is
introduced in the overdamped case in an asymmetric poten-
tial �e.g. one of the lines in Fig. 1�b��—here a shorter interval
�escape over the smaller barrier� is usually followed by a
longer interval �escape over the higher barrier�. Put differ-
ently, in an asymmetric system the particle keeps a memory
of the side it is on or was on a certain number of transitions
ago. We note that in this case taking only the subsequent
residence times in one specific �e.g., the left� well would
yield a sequence of uncorrelated times. Another statistics that
excludes this trivial kind of correlation is the sequence of
stochastic periods, which are simply the sum of two subse-
quent residence times in the left and right state. The stochas-
tic periods �also indicated in Fig. 2� are a natural generaliza-
tion of what would be the period for a deterministic two-state
process.

Extensions of the model Eq. �1� have been considered in
the context of stochastic resonance �13,14�, resonant activa-
tion �15�, and other noise-induced resonances �e.g., in sys-
tems with delay as in Refs. �16,17��. Generally, a complex
system like a protein which performs an escape out of a
metastable state may have other processes of internal �feed-
back� or external �a signal to be transduced in a biological
system� origin that perturb this process. Also fluctuations
may not be white as assumed in Eq. �1�. All these cases have
been studied with particular emphasis on changes in the es-
cape rate or in the distribution of residence times. Almost no
attention has been paid to the fact that generally, with a col-
ored noise input, a delayed feedback, or an external �non-
white� perturbation, the conditions for the independence of
the RT’s in the sequence are violated. The properties of the
RT correlations may characterize aspects of the escape pro-
cess much better than the rate of escape �equivalently, the
mean residence time�. However, to calculate these correla-
tions is much more complicated than the single RT statistics,
which is most likely the reason that there have been only a
few such attempts.

We have recently shown �18� how for a bistable system
with dichotomous noise perturbation �for the modulated po-
tential, see Fig. 1�b�� the statistics of the correlation can be
calculated. The approach used a discretization and particular
master equation setup that allows for an analytical treatment.
We also showed that RT correlations oscillate and decay in
magnitude exponentially with increasing lag. Furthermore,
under a resonance-like condition �the switching rate of the
dichotomous noise matches the escape rate of the unper-
turbed system� these correlations vanish at all lags and reap-
pear for fast driving with an inverted amplitude �e.g., lags
that are positively correlated for slow driving become nega-
tively correlated for fast driving�. We have also demonstrated
how one could infer a possibly unknown switching rate from
the correlation statistics in the case of a slow driving force.

Here we detail our approach and discuss also other mea-
sures of the driven process, such as, for instance, the corre-
lations of the stochastic periods, the Fano factor of the num-
ber of transitions, and the power spectrum of the bistable
process. We also present proof of the formula for the SCC,
the main result of �18�. Our results are exact within the
framework of a rate description and apply for arbitrary cor-
relation times; they are moreover not limited to a weak driv-
ing force. Our approach only assumes the use of dichoto-
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FIG. 2. Illustration of residence times and stochastic periods.
From top to bottom: �i� typical trajectory of the driven bistable
system �D=0.05, �=0.04, �=0.1	=1.329
10−4�; �ii� associated
sequence of RT’s In; �iii� sequence of stochastic periods �n.
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mous colored noise, which can be seen as a case study to
explore the whole range of correlation times, including long-
range temporal correlations. We hope that the general results
derived in this study will help to clarify the influence of
temporal correlations for first- and higher-order statistics.

II. MODEL AND NTH-ORDER RT STATISTICS

A. Stochastically driven bistable system

Let us consider the standard example of an overdamped
Brownian motion x�t� in the doublewell potential U�x�
=x4 /4−x2 /2. Additionally, we introduce a stochastic driving
force ��t�, so that Eq. �1� reads

ẋ = − U��x� + ��t� + �2D��t� . �3�

Here, ��t� is assumed to be a dichotomous Markov
process with exponential correlation function ���t���t���
=�2 exp�−2��t− t���. This means that ��t� switches between
the two values � and −� with a constant rate �, which leads
effectively to a time-dependent, asymmetric potential U
→U
�x as shown in Fig. 1�b�. The amplitude � of the
dichotomous driving is such that the system preserves bista-
bility. Specifically, this requires ��2 / �3�3�.

The white Gaussian noise ��t� permits stochastic transi-
tions between the two metastable states. In the symmetric
case, i.e., when �=0, they are separated by a potential barrier
of height �U=1 /4 and the minima of the potential are lo-
cated at x=−1 and 1 �corresponding to “left” and “right”
metastable state, respectively�. In the presence of the di-
chotomous driving, the barrier heights for a transition are
smaller or larger than �U=1 /4 depending on the metastable
state �left or right� and the current value of ��t�. Note that the
locations of the minima also change compared to the sym-
metric case.

Due to the stochastic nature of the driving force, ��t� can
be seen as a simple realization of colored noise with a cor-
relation time 1 / �2��; see, e.g., �19�. The advantage of this
combination of white and two-state noise consists in analyti-
cally feasible calculations that permit studying the effect of
noise correlations. In a different context, similar setups have
successfully served as a model for stochastic synchronization
with periodic �20� or stochastic �21� driving or both periodic
and stochastic driving �22�. It should be also mentioned that
Eq. �3� is a simple model of one bistable system �modeled by
the dichotomous input� driving another one. There exist also
possible experimental realizations �23,24�.

To judge the validity of our analytical results, we per-
formed extensive numerical simulations of the continuous
dynamics x�t�, from which we obtained a long sequence of
RT’s �the number of RT’s in one sequence was at least 107�.
The white noise driven dynamics in the potential U�x�
−��t�x was integrated using the Heun algorithm �25� with
step size �t=0.01. The dichotomous switchings of the poten-
tial were realized by the Gillespie algorithm �26�, i.e., the
waiting times were randomly drawn from an exponential dis-
tribution. In Fig. 2, we show a typical trajectory of the
bistable system �3�, which jumps between the two metastable
states. It becomes apparent that many physical features, such

as the RT’s, can still be captured if one neglects the fast
intrawell dynamics. This permits us to formulate the problem
in the framework of a rate model with two discrete states X−
and X+ corresponding to left and right metastable state, re-
spectively. More precisely, if the trajectory belongs to the
basin of attraction of the left attractor of the bistable poten-
tial, the system is said to be in the state X−, otherwise it is
said to be in the state X+. There is an exception, however: in
order to enter a new state, the trajectory must first reach the
attractor �i.e., the minimum of the potential� belonging to
this new state. Thus, a short fluctuation into the other basin
of attraction without reaching the attractor and back to the
original domain does not count as a state transition. This
definition of a transition is used to define the RT’s, which are
simply the time intervals between two successive transitions.
Hence, a sequence of RT’s is essentially a sequence of first
passage times from one attractor to the other. In the same
manner, we also extracted the RT sequence from the simula-
tions of x�t�.

The two states X+ and X− of the process x�t� together with
the two states +� and −� of the dichotomous noise ��t� form
a four-state stochastic process. However, instead of using the
variable x�t�, we introduce the counting variable N�t�. This
variable labels successively the metastable states by an inte-
ger n starting with N�0�=1 corresponding to the state X−.
Here, we assumed without loss of generality that the system
starts in the left metastable state X−. Each transition incre-
ments N�t� by one. Consequently, an odd value of N�t� is
equivalent to X−, whereas an even value of N�t� is equivalent
to X+. The usage of N�t� instead of x�t� will allow us to count
the number of transitions.

As a next step, we specify the statistics of the transition
times between the discrete states. According to the definition
of a transition, the statistics are, in general, given by first-
passage-time densities from one attractor to the other. After a
short relaxation period following a transition, the process
has established a local equilibrium near the attractor from
which the system escapes with an exponentially distributed
waiting time. If the mean RT of each metastable state is
much larger than the local relaxation time tloc	�U��xmin��−1,
we can neglect the transient period. This allows us to use a
rate description with constant transition rates equal to the
escape rates of the exponential waiting time density. As il-
lustrated in Fig. 3, the transition probabilities between states
per unit time are denoted by k�=W�n , �� �n−1, ���
if n is even, k
=W�n , �� �n−1, ��� if n is odd, and
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FIG. 3. Kinetic scheme of the discrete state process. The di-
chotomous driving is described by the two states �= ��, which
change with rate �. The bistable system can perform a transition to
the other metastable state with rate k+ or k− depending on the driv-
ing state ��t�, thereby incrementing the state variable N�t� by one.
Adopted and modified from �18�.
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�=W�n , �� �n , 
��. Note that these rates contain all the
details of the underlying continuous model �e.g., shape of the
potential, amplitude of the dichotomous driving, locations of
the minima of the potential�.

The probabilistic dynamics of the bistable system is com-
pletely characterized by the transition rates and the initial
conditions of the system. In particular, the dynamics can be
formulated by a master equation: If pn,��t� denotes the joint
probability that at time t the system is in the nth metastable
state, i.e., N�t�=n, and ��t�= ��, the master equation reads
for odd n �cf. Fig. 3�

ṗn,+ = − �k+ + ��pn,+ + k−pn−1,+ + �pn,−,

ṗn,− = − �k− + ��pn,− + k+pn−1,− + �pn,+. �4�

Here and in the following, the equations for even n are ob-
tained by exchanging the roles of k+ and k−.

The determination of the initial conditions pn,��0� needs
some more explanation. What complicates matters is that our
master equation approach requires an ensemble for the initial
conditions such that the ensemble average coincides with the
average over the sequence of RT’s. In other words, the initial
conditions of the ensemble should correspond to the state of
the system at transitions along a single trajectory of the sys-
tem. This can be achieved by regarding a subensemble of the
stationary system whose members have all just suffered a
transition from X+ to X− at the initial moment t=0. In doing
so, we find, for instance, that the ensemble average of the
transition time of the following transition �from X− to X+�
gives exactly the mean RT of a single RT sequence. The
particular preparation of the ensemble implies that the prob-
abilities to find the initial driving force ��0� at +� or −� are
not equal, because the initial transition from X+ to X− is more
likely to occur when the potential is tilted to the left, i.e.,
when ��0�=−�. Thus, the initial probability p1,��0� is given
by the probability that ��0�= ��, which is exactly the prob-
ability of ��t� sampled at the transition times t= tn �biased
sampling�. Furthermore, the initial probabilities for n�1 are
zero, i.e., pn,��0�=0, since at time t=0 the system is in the
first metastable state N�0�=1.

The probability that �=� at the moment of the initial
transition is proportional to the probability current j��� from
the state 
X+ ,�� into the state 
X− ,��, i.e., p1,+�0�=cj���
�c is a factor of proportionality�. Analogously, the other ini-
tial probability is p1,−�0�=cj�−��. To determine the currents
j��� and j�−��, we consider the stationary probabilities
ps�X+ ,��=�mp2m,+�t� and ps�X+ ,−��=�mp2m,−�t� to find the
system in the lower right or upper right well of the bistable
potential. To this end, we sum up both sides of the master
equation �4� over all even integers n and use ps�X− , ���
= ps�X+ , 
�� to obtain an equation for the stationary prob-
abilities,

�k+ + ��ps�X+,− �� = �k− + ��ps�X+,�� .

With the additional relation ps�X+ ,��+ ps�X+ ,−��= 1
2 , we

find

ps�X+, � �� =
� + k�

2�k+ + k− + 2��
. �5�

The probability currents are then simply given by j���
=k−ps�X+ ,�� and j�−��=k+ps�X+ ,−��. Using the normaliza-
tion relation p1,+�0�+ p1,−�0�=1, one can eliminate the factor
c, which finally gives the initial probabilities

p1,��0� =
k
�� + k��

��k+ + k−� + 2k+k−
. �6�

As long as a rate description is meaningful, the discrete
bistable model �4� describes the continuous model Eq. �3�
faithfully if the transition rates k+ and k− are adequately
specified as the inverse mean first passage times from one
minimum to the other minimum of the double-well potential.
They are given by the well-known formula for the mean first
passage time �MFPT� of a one dimensional diffusion process
�27�,

k� = D
�
a

b

dyeV��y�/D�
−�

y

e−V��z�/Ddz�−1

, �7�

where V��x�=U�x�
�x and a and b are the positions of the
left and right minimum of V��x�, respectively, i.e., a�b. In
the case of small driving amplitude � and small noise inten-
sity D, we can approximate the transition rates by the Kram-
ers rates �see Eq. �2��

k� =
1

�2�
exp�−

�U 
 �

D
� . �8�

B. First- and higher-order RT statistics

In the following, we define and classify the statistical
measures that will be used to characterize the statistics of a
RT sequence. To this end, we denote the RT of the nth meta-
stable state by In and the nth transition time by Tn �the initial
�zeroth� transition occurs at T0=0�. We furthermore define
the stochastic periods as

�n = I2n−1 + I2n, �9�

i.e., the sum of two subsequent residence times �left and right
well�, which can be interpreted as one �random� period of the
stochastic oscillation �Fig. 2�.

In the theory of point processes, the sum of n successive
intervals in a sequence is known as the nth-order interval.
Due to the special choice of the ensemble, the ensemble
average of the transition times �Tn� is equal to the nth-order
intervals averaged along the sequence. To perform the en-
semble averages, we introduce the probability density fn�t�
of the nth transition time Tn.

To relate this probability density to the joint probabilities
pn,��t�, we consider the probability

Pn�t� = pn,+�t� + pn,−�t� �10�

that at time t the system is in the nth metastable state. Using
the master equation �4�, we then find that the probability
density for odd n is given by
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fn�t� = −
d

dt
Prob�t � Tn�

= −
d

dt
�
k=1

n

Pk�t�

= k+pn,+�t� + k−pn,−�t� . �11�

We call the RT statistics a first-order RT statistics if it
only involves the probability density f1�t�, i.e., the statistics
of T1 �first-order intervals�. Conversely, if the RT statistics
requires the statistics of Tn �nth-order intervals� with n�1,
which is given by fn�t�, we refer to it as a higher-order RT
statistics.

The RT density f1�t� was explicitly calculated and dis-
cussed in �18�, from which, in general, any first-order RT
statistics can be derived; it reads

f1�t� = c1e−�1t + c2e−�2t, �12�

with �1/2=k+���k2+�2−	2 and c1/2= f1�0� /2
� ��k+��f1�0�− �2k�+	2�� /2�k2+�2−	2. As an important
example, we will analyze the coefficient of variation �CV�,
which constitutes a useful measure of the variability of a
point process’ intervals. It is defined as the ratio of standard
deviation and mean of the RT’s,

CV =
���T1

2�
�T1�

. �13�

Throughout the paper, we use the notation ��X2�= �X2�
− �X�2 for the variance of a random variable X. For compari-
son, the CV of a Poisson process is 1 and that of a strictly
periodic process is zero; a CV larger than 1 indicates strong
variability as, for instance, associated with bursting in the
number of events.

For a renewal point process, i.e., a point process where all
intervals �RT’s� are statistically independent, the first-order
RT statistics is sufficient, because the process is completely
determined by the interval density f1�t�. The dichotomous
noise in our model, however, induces correlations between
RT’s, which render the sequence nonrenewal. A higher-order
RT measure which quantifies the correlation between two
RT’s as a function of their lag n is the serial correlation
coefficient �SCC� defined by

�n =
�IkIk+n� − �Ik��Ik+n�

�Ik
2� − �Ik�2 . �14�

Thus, the nth SCC is the covariance between the RT Ik and
the RT which is lagged by n, Ik+n, normalized by the variance
of Ik. Here, the involved averages are taken across the se-
quence �i.e., averaging over the index k�. There is a simple
relation, which links the SCC with the nth-order intervals
�7�,

�n =
��Tn+1

2 � + ��Tn−1
2 �

2��T1
2�

−
��Tn

2�
��T1

2�
. �15�

Below we will also consider the serial correlation coeffi-
cient of the stochastic periods,

�̂n =
��k�k+n� − ��k���k+n�

��k
2� − ��k�2 . �16�

By expressing the periods �k by the residence times, one
finds the following relation between �n and �̂n:

�̂n =
�2n−1 + 2�2n + �2n+1

2�1 + �1�
. �17�

Another possibility to characterize the RT sequence yields
the statistics of the count process. This process is given by
the number of transitions N�t� that fall in an arbitrarily cho-
sen time window of length t. Note that at the beginning of
the time window, there does not have to be a transition. A
widely used measure yields the Fano factor F�t�, which is
defined as the variance-to-mean ratio of N�t�,

F�t� =
��N�t�2�

�N�t��
. �18�

It is a measure for the variability of a point process on a
certain time scale t and is equal to unity for a Poisson pro-
cess. As will become clear below, the Fano factor is a higher-
order measure, because it involves the probability densities
fn�t� of all n�1. The calculation of the variance ��N�t�2�
also suggests the introduction of an effective diffusion coef-
ficient of the count process,

Deff = lim
t→�

d

dt

��N�t�2�
2

. �19�

This quantity describes the long-time variability of the count
process,

F�t� ——→
t→�

2Deff�T1� .

III. THEORY

A. Discrete state dynamics

At first we derive an equation for fn�t� and Pn�t� from Eq.
�4�. For this purpose, we differentiate Eqs. �10� and �11� and
apply the master equation �4�. Inserting the inverse relation
pn,�= � �fn−k
Pn� / �k+−k−� �n odd�, we arrive at

ḟ n = − 2�� + k�fn + �2�k + 	2�Pn + 	2Pn−1,

Ṗn = − fn + fn−1, �20�

with f0= P0=0. Here, we have introduced the parameters 	
=�k+k− and k= �k++k−� /2. The meaning of these new param-
eters becomes particularly clear in the Kramers case given by
Eq. �8�. In this case, we find

	 = exp�− �U/D�/�2� ,

k = cosh��/D�	 .

Apparently, 	 coincides with the Kramers rate of the un-
driven �symmetric� system, i.e., with the escape rate for �
=0. By contrast, k reflects the driving amplitude � and thus
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describes the asymmetry of the bistable system caused by the
driving force. In general, it holds that k�	, with equality in
the symmetric case �=0. Thus, the degree of asymmetry
induced by the driving amplitude may be quantified by the
ratio k /	�1. Examples for parameter values k and 	 for the
driving amplitudes � that were used in simulations are listed
in Table I �cf. also Fig. 4�.

The initial conditions for Eq. �20� can be easily derived
from Eq. �6� as f1�0�=	2��+k� / ��k+	2�, P1�0�=1, and
fn�0�= Pn�0�=0 for all n�1.

At this point, one can see that the two driving parameters
� and k enter symmetrically into the dynamics �20� and the
initial conditions. This means that exchanging � and k results
in exactly the same statistics of the driven bistable system.
However, the roles of k and � are not ambiguous in the slow
driving case ��	, which is due to the definition of k: in
contrast to �, which can take any non-negative value, k is
bounded below by the value 	. The symmetry entails the
interesting consequence that if the switching rate � of the
dichotomous driving is equal to 	, the RT sequence must be
a Poisson process with rate 	. In fact, due to the symmetry,
the case �=	 for some k=k* is equivalent to k=	 and �
=k*. The situation k=	 is, however, precisely the case of the
undriven bistable system. By definition, this symmetric sys-
tem generates a Poisson process with rate k+=k−=	.

The first and second moment of Tn, which are needed for
the calculation of the CV and SCC, can be obtained from the

Laplace transform f̄ n defined as

f̄ n�s� = �
0

�

fn�t�e−stdt . �21�

As is well known, the moments are given by the derivatives
at s=0,

�Tn� = − � df̄n

ds
�

s=0
, �Tn

2� = � d2 f̄ n

ds2 �
s=0

. �22�

We transform the system of differential equations �20� by
means of Eq. �21� into the system of linear algebraic equa-
tions,

�s + 2�� + k�� f̄ n − �2�k + 	2�P̄n = fn�0� + 	2P̄n−1,

f̄ n + sP̄n = Pn�0� + f̄ n−1, �23�

with f̄0= P̄0=0.

B. Mean RT and coefficient of variation

The calculation for the first-order RT statistics can be
achieved by solving Eq. �23� for n=1, which yields

f̄1�s� = g�s��	2 + 2k� + f1�0�s� ,

P̄1�s� = g�s��s − f1�0� + 2�k + ���

with g�s�= �s2+2�k+��s+2k�+	2�−1. Using Eq. �22�, we
find the first two moments

�T1� =
k + �

k� + 	2 �24�

and

�T1
2� = 2

2�k2 + �2� − 	2 + 3k�

�k� + 	2��2k� + 	2�
. �25�

The mean transition rate of the driven system is therefore r
= �k�+	2� / �k+��. For slow driving ��	 the mean transi-
tion rate is smaller than 	 and for fast driving ��	 it is
larger than 	 �Fig. 5�a��. In the Poisson case �=	, the mean
transition rate equals exactly the rate of the dichotomous
driving, i.e., r=�=	, as already stated.

Since ��T1
2�= �T1

2�− �T1�2, the CV is obtained as

CV =�1 + 2
�k2 − 	2��	2 − �2�
�k + ��2�	2 + 2k��

. �26�

This expression predicts that the CV can be larger than,
equal to, or smaller than 1, depending on the switching rate �
�Fig. 5�b��. For slow driving, i.e., ��	, we find a CV larger
than 1. This can be intuitively understood if we consider the
limit �→0 of a vanishing switching rate. In this case, the
sequence of RT’s can be decomposed into two subgroups of
RT’s depending on whether the RT’s belong to the upper or

TABLE I. Parameter values of the driving amplitude � that were
used in the simulations of the Langevin equation �3� with noise
intensity D=0.05. The table translates � into the parameter k= �k−

+k+� /2 and 	=�k−k+ of the theory. The values of k and 	 were
computed from the MFPT formula �7�. For comparison, we also
indicate the value of kKr /	Kr obtained by the Kramers rates Eq. �8�.
Furthermore, the ratio of the rates k+ and k− is shown. For all values
of �, we obtain 	Kr=0.001 52. The amplitudes of the dichotomous
driving are always smaller than the critical forcing amplitude �
��crit=2 / �3�3��0.385, beyond which there is only one potential
minimum.

D=0.05

� 	 k /	 kKr /	Kr k+ /k−

0 0.001370 1.00 1.00 1.00

0.04 0.001329 1.30 1.34 4.54

0.07 0.001247 2.02 2.15 14.25

0.1585 0.000844 10.00 11.92 398.00

-1.5 -1 -0.5 0 0.5 1 1.5
x

-0.4

-0.2

0

0.2

U(x)

σ=0
σ=0.04
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σ=0.1585

FIG. 4. Asymmetry of the potential for the � values indicated in
Table I.
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lower well. If we keep the sequential order in each subgroup,
we obtain two Poisson processes with rate k+ and k−, respec-
tively. Thus, mean and standard deviations are equal to the
values mu=1 /k+ and ml=1 /k−, respectively. Now consider
the mean m and variance v of the total RT sequence. The
mean is given by m= �ml+mu� /2, whereas the variance is
equal to the mean variance �ml

2+mu
2� /2 of the subgroups plus

the variance of the means �ml
2+mu

2� /2−m2 by virtue of the
law of total variance. Thus, we find v=ml

2+mu
2−m2�m2,

which indeed implies CV=�v /m�1.
Moreover, the Poisson case �=	 recovers the well-known

result CV=1 that holds for any �homogeneous� Poisson pro-
cess. Furthermore, for ��	 the CV becomes smaller than 1
and it even attains a minimum at a certain optimal switching
rate, where the jump process is most regular. However, if the
switching becomes so fast that the particle virtually experi-
ences the same average escape rate out of both metastable
states, the CV approaches 1 again. It is easily verified that
the CV as a function of both k and � possesses a global
minimum of �3 /2�0.866 and a global maximum of �3
�1.732. Hence, the range of optimizing the CV is rather
limited and the effect of a regularization of the output is
rather weak.

C. Serial correlation coefficient

For n�1, the system �23� can be written in the form of
the recurrence relation

� f̄ n

P̄n

� = g�s�� 2k� + 	2 	2s

2�k + �� + s − 	2 �� f̄ n−1

P̄n−1

� , �27�

which permits together with Eqs. �22� and �15� the calcula-
tion of the SCC. The result has been presented in �18�, which
states that �n is given by the alternating geometric sequence

�n = C
−
	2

2k� + 	2�n

�28�

with

C =
�k2 − 	2��	2 − �2�

2k��k2 + �2 + 	2� + 3	2�k2 + �2� + 2�k2�2 − 	4�
.

�29�

A proof of this formula is presented in the Appendix. This
surprisingly simple expression clearly reveals an alternating
behavior and an exponential decay of the SCC with respect
to the lag n. The main features and the consistency with
simulations have been discussed in �18�. For comparison
with the behavior of the stochastic periods �see below�,
theory and simulation results for �n are depicted in Figs. 6�a�
and 6�b�.

For a slow switching rate ��	 �cf. Fig. 6�a��, the coeffi-
cient C is positive, which implies that the SCC’s
�1 ,�3 ,�5 , . . . at odd lags are negative, whereas the SCC’s
�2 ,�4 ,�6 , . . . at even lags are positive. This is exactly the
behavior that one would expect for a slow driving �18�: sub-
sequent RT’s consist of an �in the mean� longer RT �escape
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FIG. 5. �a� Mean transition rate �inverse mean RT� and �b� CV
as a function of � /	 are depicted for different asymmetry param-
eters k �as indicated�. Lines correspond to the theoretical results
Eqs. �24� and �26�; symbols correspond to simulations of the
Langevin equation �3� ��: k=1.3	, �: k=2	, �: k=10	�. The
parameters for the simulation were chosen as D=0.05 and, depend-
ing on k, � was computed according to the MFPT formula �7� �see
Table I�.
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FIG. 6. SCC of RT’s as a function of the lag for slow driving
with �=0.1	 �a� and fast driving with �=2	 �b�. In both cases k
=2	. Theoretical results �Eq. �28�� are represented by circles, the
SCC’s obtained from the simulation of the Langevin equation �3�
are represented by squares. The lower panel shows the correspond-
ing SCC of the SP. �c� For slow driving �=0.1	 and �d� fast driving
�=2	. The parameters for the simulation were D=0.05, and � was
computed corresponding to k=2	 by the MFPT formula �see Table
I�.
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over the larger barrier� and a shorter RT �escape over the
smaller barrier� or the reversed succession—in any case, de-
viations of the two adjacent RT’s go statistically in different
directions and thus adjacent RT’s are anticorrelated.

In the case of fast switching, i.e., ��	 �cf. Fig. 6�b��, the
prefactor C becomes negative, which leads to a sign inver-
sion of the correlation coefficients. This entails an alternating
behavior the opposite way around: the serial correlations
�1 ,�3 ,�5 , . . . are now positive, while �2 ,�4 ,�6 , . . . are nega-
tive. As expected, all correlations between intervals vanish in
the Poisson case �=	.

Knowing the SCC of the RT’s, we can also calculate the
SCC of the stochastic periods via Eq. �17�. The result can be
expressed by the SCC of the RT at odd lags,

�̂n =
2k2�2

�1 + �1��2k� + 	2�2�2n−1. �30�

Interestingly, this correlation coefficient vanishes for �
→0 as �2 �note that the factor �1+�1��0�, i.e., for a very
slow driving the stochastic periods are not correlated any-
more, in marked contrast to the residence times. At finite �
�0, the correlations of the stochastic periods have the same
sign as �2n−1 due to the positive prefactor. This also includes
the inversion of the correlations’ sign at �=	. The SCC of
the stochastic periods exhibits a purely exponential decay
that is either negative �slow driving, Fig. 6�c�� or positive
�fast driving, Fig. 6�d��. In general, there is a good agreement
with results of numerical simulations if for the rates the first-
passage time Eq. �7� is used.

Our analytical results for the SCC at lag one are plotted vs
� and k in Fig. 7. Two features become apparent: �i� the
correlations are clearly maximized for slow driving; �ii� for

any fixed value � there exists an optimal value of k /	, i.e.,
an optimal amplitude of the dichotomous forcing that maxi-
mizes the SCC of the residence time. The second feature is
also verified by numerical simulation results �cf. Fig. 7�b��
can be explained as follows. On the one hand, it is plausible
that the forcing can get too strong to see pronounced corre-
lations: for very strong forcing, the output just follows the
input dichotomous signal, which does not show any interval
correlations by assumption. On the other hand, for vanishing
driving amplitude, the response will not be correlated either.
Thus, the correlation is maximized at finite k. The saturation
seen for �1 �RT� at vanishing � corresponds simply to the
value of negative correlation between the RT’s in the two
potential minima in a potential with static bias.

Turning to the SCC of the stochastic periods �Fig. 8�, we
find similar maxima vs k that, however, depend on the value
of �. The shape of the surface at slow driving ��→0� sug-
gests a dependence on a single argument

a = k�/	2 �31�

which yields after insertion into Eq. �30� and neglecting all
remaining powers in �

�̂1 � −
2a4

�4a4 + 8a3 + 2a2��2a + 1�2 . �32�

This function has a local minimum at

amin =
�10 cos�arctan�3�111�/3� − 1

3
� 0.585,
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FIG. 7. �Color online� SCC of adjacent RT’s �1 is shown as a
function of switching rate � and asymmetry k: �a� �1 as a function
of � /	 for k=2	, �b� �1 as a function of k /	 for slow switching rate
�=0.1	, and �c� for fast switching rate �=2	. Symbols in �b� rep-
resent simulation results for �1. The lower panel �d� shows a 3D
plot of �1 as a function of both � and k.
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�̂1�amin� � − 0.018. �33�

The latter value is apparently the maximal �negative� corre-
lation of the stochastic periods that we can achieve in the
bistable system. The scaling kmin�min /	2�0.585 for the op-
timal SP correlations suggests that the latter are of dynamic
origin—for a static tilting of the bistable potential, the sto-
chastic periods will be uncorrelated.

From the discussion above, it has become clear that RT
correlations are most significant in the case of slow dichoto-
mous driving. In this case, the measurement of correlations
within a RT sequence could be used to estimate the switching
rate � �18�. Here, we derive an explicit expression for the
switching rate in the case ��	, i.e., in the case of long-
correlated noise. Then from the correlation coefficients �1
and �2 one could calculate the ratio q=�2 /�1=−	2 / �	2

+2k���0. Another measurable quantity is the mean RT or
its inverse the mean transition rate r= �k�+	2� / �k+����
+	2 /k. If we eliminate 	2, we find the useful input-output
relation

� =
1 + q

1 − q
r �q � 0� , �34�

which holds for slow driving and arbitrary asymmetry.
Hence, the �possibly� unknown parameter � of the driving
can be expressed by the use of higher-order statistics.

D. Fano factor and effective diffusion coefficient

For a stationary counting process N�t�, the mean and vari-
ance are given by �28�

�N�t�� = rt �35�

and

var
N�t�� = rt + 2r�
0

t

�t − t��h�t��dt� − r2t2, �36�

where r= �k�+	2� / ��+k� is the inverse mean RT and h�t� is
the conditional probability density that there is a transition at
t provided that there was a transition at t=0. In our case, this
quantity can be written as

h�t� = �
n=1

�

fn�t� .

Summing up the first equation of Eq. �20� and noting that
�n=1

� Pn�t�=1, we find

ḣ = − 2�� + k�h + 2�k� + 	2� .

This can be solved using the initial condition h�0�= f1�0�
=	2�k+�� / �k�+	2� resulting in

h�t� = r + �	2

r
− r�e−2��+k�t.

Using Eq. �36�, we obtain

var
N�t�� = �r +
	2 − r2

k + �
�t +

r2 − 	2

2�k + ��2 �1 − e−2�k+��t�

�37�

and, hence, the Fano factor is

F�t� = 1 +
�k2 − 	2��	2 − �2�
�k + ��2�k� + 	2�


 
1 −
1 − e−2�k+��t

2�k + ��t � .

�38�

From this expression, one can see that the Fano factor is 1
for t→0 and monotonically increases �decreases� for ��	
���	� when the length of the time window t is increased
�Fig. 9�. In the Poisson case �=	, the Fano factor is identi-
cally 1, as expected. For infinitely large time windows, i.e.,
t→�, the Fano factor saturates at

F� = 1 +
�k2 − 	2��	2 − �2�
�k + ��2�k� + 	2�

.

In the asymptotic limit t→�, the variance grows linearly
in time. Thus, from Eq. �37� we find the effective diffusion
coefficient

Deff =
�k� + 	2���2 + k�k + �� − 	2�

2�k + ��3 . �39�

For a given asymmetry k in the range 	�k��3	 �weak
driving�, the effective diffusion coefficient possesses a mini-
mum at the optimal switching rate

�opt =�1

2
�3	2 − k2� � 	 �40�

�Fig. 10�. This means that at this switching rate of the input
signal, the “phase” of the output is most coherent. At k
=�3	 the minimum disappears and the effective diffusion
coefficient is a monotonically increasing function of � for
k��3	. In the limit of large asymmetry, we find
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lim
k→�

Deff =
�

2
. �41�

As a consequence, the effective diffusion coefficient can be
arbitrarily small if only the driving is sufficiently slow and
strong.

E. Binary spectrum

To investigate the spectral properties of the bistable pro-
cess x�t�, we consider the power spectrum of the two-state
filtered process x̃�t�, which takes the value x̃=−1 if the sys-
tem is in the state X− and x̃=1 if the system resides in the
state X+. The spectrum of this binary process will be called
the binary spectrum. To calculate the binary spectrum, we
consider the autocorrelation function C�t�= �x̃�t�x̃�0��. Using
the two-point joint probabilities of x̃�t�, we can write

�x̃�t�x̃�0�� = P�1,t;1,0� + P�− 1,t;− 1,0� − P�1,t;− 1,0�

− P�− 1,t;1,0� = 2�P�− 1,t�− 1,0� − P�1,t�

− 1,0��P�− 1,0� = P�− 1,t�− 1,0� − P�1,t�− 1,0� .

The conditional probabilities to find the particle on the left or
right side at time t are

P�− 1,t�− 1,0� = �
i=1

�

P2i−1�t�

and

P�+ 1,t�− 1,0� = �
i=1

�

P2i�t� ,

respectively. Differentiating and using Eq. �20�, we obtain

Ċ�t� = 2�
i=1

�

�− 1�i f i�t� . �42�

Differentiating two more times and using repeatedly Eqs.
�20� and �42�, we find the third-order differential equation

C� = − 2�k + ��C̈ − 4k�Ċ . �43�

One obvious initial condition for this equation yields C�0�
=1. The other initial conditions can be found as follows: the
probability that ��0�= �� given that at time t=0 the system
resides in the state X− is

p����X−� =
ps�X−, � ��

ps�X−�
= 2ps�X−, � �� .

Using Eq. �5�, we find p��� �X−�= �k
+�� / �2�k+���.
Hence, the probability density for a transition at time t=0 is
given by

f1�0� = k+p���X−� + k−p�− ��X−� =
k� + 	2

k + �

and fn�0�=0 for n�1. Note that this initial value for f1�t� is
different compared to the previous sections �cf. Eq. �11��,
where we required that the origin t=0 coincides with a tran-

sition time. Using Eq. �42�, we finally obtain Ċ�0�=−2�k�

+	2� / �k+�� and C̈�0�=4	2. The solution of Eq. �43� subject
to these initial conditions yields the autocorrelation function
for t�0,

C�t� =
�	2 − �2�e−2kt + �k2 − 	2�e−2�t

k2 − �2 . �44�

We can now apply the Wiener-Khinchin theorem to obtain
the spectrum S���,

S��� = 2�
0

�

C�t�cos �tdt

=
16k��k2 + k� + �2 − 	2� + 4�k� + 	2��2

�k + ���4k2 + �2��4�2 + �2�
. �45�

Figure 11 shows that this expression for S��� is in excellent
agreement with the spectrum of the filtered process x̃�t� ob-
tained from numerical simulations of Eq. �3�.

The shape of the binary spectrum turns out to be particu-
larly useful in the slow driving case ��	. In this case, we
find that S��� consists of two well-separated Lorentzian
functions. Indeed, for high frequencies the spectrum behaves
asymptotically like

Shigh��� =
4�k� + 	2�

k

1

�2k�2 + �2 , �46�

whereas at low frequencies the spectrum can be written as

Slow��� =
4�k2 − 	2�

k2

�

�2��2 + �2 . �47�

This is illustrated in Fig. 12 and reveals that the spectrum
provides a simple estimation of the driving parameters � and
k, since the half-width at half maximum is 2� and 2k, re-
spectively. Thus, the binary spectrum offers an alternative
way to extract parameters of the dichotomous noise.

IV. CONCLUSION

The master equation approach developed by the authors in
�18� permitted a theoretical analysis of the RT sequence of a
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FIG. 10. Effective diffusion coefficient according to Eq. �39� as
a function of the switching rate of the dichotomous driving for
different asymmetry parameters k �as indicated�. The case k /	
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bistable system that is driven by dichotomous colored noise.
Based on this technique, we derived several statistical mea-
sures as a function of the driving parameters � and k, includ-
ing the coefficient of variation �first-order RT statistics�, the
serial correlation coefficient of the stochastic periods
�higher-order RT statistics�, the Fano factor, and the effective
diffusion coefficient �count statistics�, as well as the binary

spectrum of the bistable process. We also proved the formula
for the SCC of the RT’s, which was discussed in detail in
�18�. The results are exact within the rate description, i.e., the
only assumption made is that the escape rates of the meta-
stable states are approximately constant.

We found that an external dichotomous driving with a
switching rate that exactly matches the geometric mean of
the transition rates 	 makes the output sequence Poissonian.
In Kramers’ case of weak driving, this geometric mean rate 	
coincides with the escape rate of the symmetric, undriven
system. The Poissonian nature at �=	 explains why all cor-
relations vanish at that switching rate and why the CV and
the Fano factor are in this case unity regardless of the sys-
tem’s asymmetry k. The geometric mean rate 	, therefore,
establishes a characteristic �inverse� time scale of the system.
If the switching rate is not equal to 	, the output statistics
exhibits qualitatively different properties depending on
whether ��	 �slow driving� or ��	 �fast driving�. This
becomes particularly obvious for the SCC, which changes its
sign at all lags for the characteristic switching rate �=	. In
general, the slow driving regime is richer in interesting fea-
tures such as �i� large variability �CV�1,F�t��1�; �ii�
strong interval correlations �that allow for an estimation of �
�18��; �iii� minimal phase diffusion; and �iv� two Lorentzian
decays in the binary spectrum, which permit an estimation of
the driving parameters.

A problem where our method may be also applied is the
case of a periodic driving force rather than a stochastic driv-
ing. Note that a periodic forcing is an example for input
processes with an infinitely large correlation time. This case
yields the standard model of stochastic resonance, which has
been the subject of numerous studies �see �14� and references
therein�. However, higher-order RT statistics and its possible
role for stochastic resonance have not been investigated so
far. With the techniques employed in this paper, the calcula-
tion of the SCC in a periodically driven system seems to be
feasible, at least in the case of a weak driving. The question
to what extend the RT correlations characterize other aspects
of the stochastic resonance phenomenon remains an interest-
ing subject for future studies.
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APPENDIX: PROOF OF EQ. (28)

Here, a proof of the formulas �28� and �29� is given. In the
first step, the correlation coefficients �1 and �2 can be explic-
itly calculated using Eq. �15�, �22�, and �23�, which confirms
that

�1 = Cq, �2 = Cq2, �A1�

where q=− 	2

2k�+	2 is the common ratio of the sequence �28�.
In the second step, we show that for n�2, the assumption

�n−1=q�n−2 implies �n=q�n−1. This together with Eq. �A1�
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FIG. 11. Spectrum of the two-state filtered process as a function
of the frequency f =� /2� for different switching rates � �as indi-
cated in the legend�. The spectra are depicted for weak forcing with
�=0.04 �a� and for strong forcing with �=0.1585 �b�. There is a
Lorentzian decay for high frequencies and a separated second decay
in the spectrum in the case of slow switching. Here, D=0.05 and
the value for 	 and k can be seen from Table I; thick lines display
the theory and thin lines display the corresponding simulated
spectra.
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FIG. 12. Illustration of the binary spectrum of a slowly driven
system with driving parameters �=0.001	, k=2	, and 	=2 accord-
ing to Eqs. �45�–�47�. It exhibits two well-separated Lorentzian de-
cays with half-width at half maximum of �=2� and �=2k as indi-
cated by the dashed lines.
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leads by mathematical induction to the assertion �28�. At
first, however, we introduce some properties that will be use-
ful for further analysis. From Eq. �21�, it follows that

f̄1�0� = 1 �A2�

and

P̄1�0� =
k + �

k� + 	2 = �T1� . �A3�

Furthermore, we denote the matrix of the linear mapping Eq.
�27� by

A�s� = g�s�� 2k� + 	2 	2s

2�k + �� + s − 	2 � , �A4�

which for s=0 reduces to

A�0� = � 1 0

2
k + �

2k� + 	2 −
	2

2k� + 	2 � . �A5�

Using Eq. �A2�, we find

f̄ n�0� = 1 �A6�

for all n�1, which simply expresses the normalization con-

dition for fn�t�. From Eq. �A3�, it is easily found that P̄2�0�
= k+�

k�+	2 = �T1�= P̄1�0� and by induction we can state for all n
�1

P̄n�0� = �T1� . �A7�

A final obvious property concerns the mean of the nth-order
interval, which for all n�1 is given by

�Tn� = n�T1� . �A8�

Because of Eq. �15�, we consider the expression

��Tn+1
2 � − 2��Tn

2� + ��Tn−1
2 � =

�A8�

�Tn+1
2 � − 2�Tn

2� + �Tn−1
2 �

− 2�T1�2. �A9�

The second moment of Tn can be reduced in the following
way:

�Tn
2� = � d2 f̄ n

ds2 �
s=0

= 
 d2

ds2 �A11 f̄ n−1 + A12P̄n−1��
s=0

= �A11� f̄ n−1 + 2A11� f̄ n−1� + A11�0� f̄ n−1�

+ A12� P̄n−1 + 2A12� P̄n−1� �s=0

= A11� �0� − 2A11� �0��n − 1��T1� + �Tn−1
2 �

+ A12� �0��T1� + 2A12� �0�P̄n−1� �0� .

Here, we have again used Eqs. �A5�–�A8�. All terms that are
independent of n or linear in n will cancel out when inserted
in the first three terms on the r.h.s. of Eq. �A9�. Thus, we
obtain

��Tn+1
2 � − 2��Tn

2� + ��Tn−1
2 � = �Tn

2� − 2�Tn−1
2 � + �Tn−2

2 �

− 2�T1�2 + 2A12� �0��P̄n��0�

− 2P̄n−1� �0� + P̄n−2� �0�� .

It can be shown in the same way that the expression in brack-
ets can be reduced as follows:

P̄n��0� − 2P̄n−1� �0� + P̄n−2� �0� = A22�0��P̄n−1� �0� − 2P̄n−2� �0�

+ P̄n−3� �0�� .

Using the last two relations and taking into account that
A12� �0�=−A22�0�=−q, we find

2��T1
2��n = �Tn

2� − 2�Tn−1
2 � + �Tn−2

2 � − 2�T1�2 − 2q2�P̄n−1� �0�

− 2P̄n−2� �0� + P̄n−3� �0�� .

Subtracting from this relation the expression 2��T1
2��n−1

= �Tn
2�−2�Tn−1

2 �+ �Tn−2
2 �−2�T1�2, we obtain

2��T1
2���n − �n−1� = − 2q2�P̄n−1� �0� − 2P̄n−2� �0� + P̄n−3� �0�� .

In an analogous manner, it is true that

2��T1
2���n−1 − �n−2� = − 2q�P̄n−1� �0� − 2P̄n−2� �0� + P̄n−3� �0��

and dividing both expressions yields

�n − �n−1 = q��n−1 − �n−2� .

According to the assumption, it is q�n−2=�n−1 and hence �n
=q�n−1.
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